3.8.19 \(\int \sec (c+d x) (a+b \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\) [719]

Optimal. Leaf size=374 \[ -\frac {4 a (a-b) \sqrt {a+b} \left (70 A b^2-3 a^2 C+41 b^2 C\right ) \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (105 a A b-35 A b^2+6 a^2 C+57 a b C-25 b^2 C\right ) \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^2 d}-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b d}-\frac {4 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b d}+\frac {2 C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 b d} \]

[Out]

-4/105*a*(a-b)*(70*A*b^2-3*C*a^2+41*C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b
))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d+2/105*(a-b)*(105*A*
a*b-35*A*b^2+6*C*a^2+57*C*a*b-25*C*b^2)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^
(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d-4/35*a*C*(a+b*sec(d*x+
c))^(3/2)*tan(d*x+c)/b/d+2/7*C*(a+b*sec(d*x+c))^(5/2)*tan(d*x+c)/b/d-2/105*(6*a^2*C-5*b^2*(7*A+5*C))*(a+b*sec(
d*x+c))^(1/2)*tan(d*x+c)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.53, antiderivative size = 374, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4168, 4087, 4090, 3917, 4089} \begin {gather*} \frac {2 (a-b) \sqrt {a+b} \left (6 a^2 C+105 a A b+57 a b C-35 A b^2-25 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^2 d}-\frac {4 a (a-b) \sqrt {a+b} \left (-3 a^2 C+70 A b^2+41 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{105 b^3 d}-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{105 b d}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{5/2}}{7 b d}-\frac {4 a C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{35 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(-4*a*(a - b)*Sqrt[a + b]*(70*A*b^2 - 3*a^2*C + 41*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x
]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))]
)/(105*b^3*d) + (2*(a - b)*Sqrt[a + b]*(105*a*A*b - 35*A*b^2 + 6*a^2*C + 57*a*b*C - 25*b^2*C)*Cot[c + d*x]*Ell
ipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqr
t[-((b*(1 + Sec[c + d*x]))/(a - b))])/(105*b^2*d) - (2*(6*a^2*C - 5*b^2*(7*A + 5*C))*Sqrt[a + b*Sec[c + d*x]]*
Tan[c + d*x])/(105*b*d) - (4*a*C*(a + b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(35*b*d) + (2*C*(a + b*Sec[c + d*x])
^(5/2)*Tan[c + d*x])/(7*b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4087

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[Csc[e + f
*x]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /;
FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4168

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(b*(m + 2))
, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) - a*C*Csc[e + f*x], x], x], x] /; Fre
eQ[{a, b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \sec (c+d x) (a+b \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac {2 C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 b d}+\frac {2 \int \sec (c+d x) (a+b \sec (c+d x))^{3/2} \left (\frac {1}{2} b (7 A+5 C)-a C \sec (c+d x)\right ) \, dx}{7 b}\\ &=-\frac {4 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b d}+\frac {2 C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 b d}+\frac {4 \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (\frac {1}{4} a b (35 A+19 C)-\frac {1}{4} \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sec (c+d x)\right ) \, dx}{35 b}\\ &=-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b d}-\frac {4 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b d}+\frac {2 C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 b d}+\frac {8 \int \frac {\sec (c+d x) \left (\frac {1}{8} b \left (5 b^2 (7 A+5 C)+3 a^2 (35 A+17 C)\right )+\frac {1}{4} a \left (70 A b^2-3 a^2 C+41 b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b}\\ &=-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b d}-\frac {4 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b d}+\frac {2 C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 b d}+\frac {\left ((a-b) \left (105 a A b-35 A b^2+6 a^2 C+57 a b C-25 b^2 C\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b}+\frac {\left (2 a \left (70 A b^2-3 a^2 C+41 b^2 C\right )\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{105 b}\\ &=-\frac {4 a (a-b) \sqrt {a+b} \left (70 A b^2-3 a^2 C+41 b^2 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (105 a A b-35 A b^2+6 a^2 C+57 a b C-25 b^2 C\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{105 b^2 d}-\frac {2 \left (6 a^2 C-5 b^2 (7 A+5 C)\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{105 b d}-\frac {4 a C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{35 b d}+\frac {2 C (a+b \sec (c+d x))^{5/2} \tan (c+d x)}{7 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(3214\) vs. \(2(374)=748\).
time = 22.51, size = 3214, normalized size = 8.59 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^3*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*((-8*a*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Sin[
c + d*x])/(105*b^2) + (4*Sec[c + d*x]*(35*A*b^2*Sin[c + d*x] + 3*a^2*C*Sin[c + d*x] + 25*b^2*C*Sin[c + d*x]))/
(105*b) + (32*a*C*Sec[c + d*x]*Tan[c + d*x])/35 + (4*b*C*Sec[c + d*x]^2*Tan[c + d*x])/7))/(d*(b + a*Cos[c + d*
x])*(A + 2*C + A*Cos[2*c + 2*d*x])) + (8*((-8*a*A*b)/(3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (4*a^3*
C)/(35*b*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (164*a*b*C)/(105*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c +
 d*x]]) - (2*a^2*A*Sqrt[Sec[c + d*x]])/(3*Sqrt[b + a*Cos[c + d*x]]) + (2*A*b^2*Sqrt[Sec[c + d*x]])/(3*Sqrt[b +
 a*Cos[c + d*x]]) - (62*a^2*C*Sqrt[Sec[c + d*x]])/(105*Sqrt[b + a*Cos[c + d*x]]) + (4*a^4*C*Sqrt[Sec[c + d*x]]
)/(35*b^2*Sqrt[b + a*Cos[c + d*x]]) + (10*b^2*C*Sqrt[Sec[c + d*x]])/(21*Sqrt[b + a*Cos[c + d*x]]) - (8*a^2*A*C
os[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(3*Sqrt[b + a*Cos[c + d*x]]) - (164*a^2*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*
x]])/(105*Sqrt[b + a*Cos[c + d*x]]) + (4*a^4*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(35*b^2*Sqrt[b + a*Cos[c +
 d*x]]))*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*(2*a*(a + b)*
(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 +
 Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + b*(a + b)*(-6*a^2*C + 5*b^2*(7*A + 5*C
) + 3*a*b*(35*A + 19*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c +
 d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + a*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Cos[c + d*x
]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^2*d*(b + a*Cos[c + d*x])^2*(A + 2*C + A*Co
s[2*c + 2*d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(7/2)*((4*a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c
+ d*x]*(2*a*(a + b)*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c +
 d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + b*(a + b)*(-6*a^2*
C + 5*b^2*(7*A + 5*C) + 3*a*b*(35*A + 19*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/(
(a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + a*(-70*A*b^2 + 3*a^2*C - 4
1*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^2*(b + a*Cos[c + d*x])
^(3/2)*Sqrt[Sec[(c + d*x)/2]^2]) - (4*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*a*(a + b)*(-70
*A*b^2 + 3*a^2*C - 41*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos
[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + b*(a + b)*(-6*a^2*C + 5*b^2*(7*A + 5*C) +
3*a*b*(35*A + 19*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x
]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + a*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Cos[c + d*x]*(b
 + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(105*b^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/
2]^2]) + (8*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*((a*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Cos[c + d*x]*(b + a*Cos
[c + d*x])*Sec[(c + d*x)/2]^4)/2 + (a*(a + b)*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/((a +
 b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1
+ Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + (b*(a + b)*(-6*a
^2*C + 5*b^2*(7*A + 5*C) + 3*a*b*(35*A + 19*C))*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellipt
icF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x
]/(1 + Cos[c + d*x])))/(2*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]) + (a*(a + b)*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)
*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c + d*x]
)/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b
 + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + (b*(a + b)*(-6*a^2*C + 5*b^2*(7*A + 5*C) + 3*a*b*(35*A + 19
*C))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*(-((a*Sin[c +
d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x])^2)))/(2*
Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]) - a^2*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Cos[c + d*x]*S
ec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - a*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*(b + a*Cos[c + d*x])*Sec[
(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + a*(-70*A*b^2 + 3*a^2*C - 41*b^2*C)*Cos[c + d*x]*(b + a*Cos[c +
d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (b*(a + b)*(-6*a^2*C + 5*b^2*(7*A + 5*C) + 3*a*b*(35*A + 19*C))*
Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]
^2)/(2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((...

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2985\) vs. \(2(340)=680\).
time = 0.46, size = 2986, normalized size = 7.98

method result size
default \(\text {Expression too large to display}\) \(2986\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-2/105/d*(1+cos(d*x+c))^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(140*A*cos(d*x+c)^4*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a
-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-140*A*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+c
os(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-140*A*cos
(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-6*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+
a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)
*a^3*b+51*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellip
ticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+82*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d
*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))
^(1/2))*sin(d*x+c)*a*b^3+6*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b-82*C*cos(d*x+c)^4*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c
),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-82*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c)
)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3+140*A
*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+co
s(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-140*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(
d*x+c)*a^2*b^2-140*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1
/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3-6*C*cos(d*x+c)^3*(cos(d*x+c)/(1
+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/
(a+b))^(1/2))*sin(d*x+c)*a^3*b+51*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*
x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2+82*C*cos(d*x+c
)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/
sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^3+6*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3*b
-82*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((
-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b^2-82*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2)
)*sin(d*x+c)*a*b^3+35*A*cos(d*x+c)^4*b^4-15*C*b^4+140*A*cos(d*x+c)^5*a^2*b^2+35*A*cos(d*x+c)^5*a*b^3+3*C*cos(d
*x+c)^5*a^3*b+82*C*cos(d*x+c)^5*a^2*b^2+25*C*cos(d*x+c)^5*a*b^3-140*A*cos(d*x+c)^4*a^2*b^2+140*A*cos(d*x+c)^4*
a*b^3-6*C*cos(d*x+c)^4*a^3*b-55*C*cos(d*x+c)^4*a^2*b^2+82*C*cos(d*x+c)^4*a*b^3-175*A*cos(d*x+c)^3*a*b^3+3*C*co
s(d*x+c)^3*a^3*b-68*C*cos(d*x+c)^3*a*b^3-27*C*cos(d*x+c)^2*a^2*b^2-39*C*cos(d*x+c)*a*b^3+25*C*cos(d*x+c)^4*b^4
-35*A*cos(d*x+c)^2*b^4-10*C*cos(d*x+c)^2*b^4-6*C*cos(d*x+c)^5*a^4+6*C*cos(d*x+c)^4*a^4+105*A*sin(d*x+c)*cos(d*
x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c
))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+105*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b^2+3
5*A*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1
+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^4+25*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(
d*x+c)*b^4+6*C*cos(d*x+c)^4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*El
lipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^4+35*A*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^
(1/2))*sin(d*x+c)*b^4+25*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+
b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^4+6*C*cos(d*x+c)^3*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+co...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c) + a)^(3/2)*sec(d*x + c), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*b*sec(d*x + c)^4 + C*a*sec(d*x + c)^3 + A*b*sec(d*x + c)^2 + A*a*sec(d*x + c))*sqrt(b*sec(d*x + c)
 + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*(a + b*sec(c + d*x))**(3/2)*sec(c + d*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(b*sec(d*x + c) + a)^(3/2)*sec(d*x + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\cos \left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2))/cos(c + d*x),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(3/2))/cos(c + d*x), x)

________________________________________________________________________________________